第二十四章 這個時空,唯一的名字!(2 / 2)

走進不科學 新手釣魚人 6158 字 11個月前

這也是徐雲為什麼會從色散現象入手的原因:

色散現象是很典型的微分模型,甚至要比萬有引力還經典,無論是偏折角度還是其本身的“七合一”表象,都直接的指向了微積分工具。

1/7這個概念,更是直接與指數的分數表態掛上了鉤。

接觸到色散現象的小牛要是不想到自己正一籌莫展的‘流數術’,那他真可以洗洗睡了。

小牛見到色散現象——小牛產生好奇——小牛測算數據——小牛想到流數術——徐雲引出楊輝三角。

這是一個完美的邏輯遞進的陷阱,一個從物理到數學的局。

至於徐雲畫出這幅圖的理由很簡單:

楊輝三角,是每個數學從業者心中拔不開的一根刺!

楊輝三角本來就是咱們老祖宗先發明並且有確鑿證據的數學工具,憑啥因為近代憋屈的原因被迫掛在彆人的名下?

原本的時空他管不著也沒能力去管,但在這個時間點裡,徐雲不會讓楊輝三角與帕斯卡共享其名!

有牛老爺子做擔保,楊輝三角就是楊輝三角。

一個隻屬於華夏的名詞!

隨後徐雲心中呼出一口濁氣,繼續動筆在上麵畫了幾條線:

“牛頓先生,您看,這個三角的兩條斜邊都是由數字1組成的,而其餘的數都等於它肩上的兩個數相加。

從圖形上說明的任一數,r),都等於它肩上的兩數-1,r-1)及-1,r)之和。”

說著徐雲在紙上寫下了一個公式:

,r)=-1,r-1)+-1,r)(n=1,2,3,···n)

以及......

(a + b)^2= a^2 + 2ab + b^2

(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3

(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 6ab^3 + b^4

(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5

在徐雲寫到三次方那欄時,小牛的表情逐漸開始變得嚴肅。

而但徐雲寫到了六次方時,小牛已然坐立不住。

乾脆站起身,搶過徐雲的筆,自己寫了起來:

(a + b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + a^6!

很明顯。

楊輝三角第n行的數字有n項,數字和為2的n-1次冪,(a+b)的n次方的展開式中的各項係數依次對應楊輝三角的第(n+1)行中的每一項!

雖然這個展開式對於小牛來說毫無難度,甚至可以算是二項式展開的基礎操作。

但是,這還是頭一次有人如此直觀的將開方數用圖形給表達出來!

更關鍵的是,楊輝三角第n行的m個數可表示為 -1,m-1),即為從n-1個不同元素中取m-1個元素的組合數。

這對於小牛正在進行的二項式後續推導,無疑是個巨大的助力!

但是......

小牛的眉頭又逐漸皺了起來:

楊輝三角的出現可以說給他打開了一個新思路,但對於他現在所卡頓的問題,也就是(P+PQ)m/n的展開卻並沒有多大幫助。

因為楊輝三角涉及到的是係數問題,而小牛頭疼的卻是指數問題。

現在的小牛就像是一位騎行的老司機。

拐過一個山道時忽然發現前方百米過後一馬平川,景色壯美,但麵前十多米處卻有一個巨大的落石堆擋路。

而就在小牛糾結之時,徐雲又緩緩說了一句話:

“對了,牛頓先生,韓立爵士對於楊輝三角也有所研究。

後來他發現二項式的指數似乎並不一定需要是整數,分數甚至負數似乎也是可行的。”

“負數的論證方法他沒有說明,但卻留下了分數的論證方法。”

“他將其稱為.....”

“韓立展開!”

.....

上一頁 書頁/目錄 下一章