八十年以前,已知的乘法運算方式隻有一種,就是在課本上所學到的常規豎式計算方法。
當進行位數少的數字相乘時,豎式計算方法是非常快捷、方便的,但若是計算數百萬位數或數十億位數的乘數之間的相乘時,豎式計算方法就顯得無能為力了,例如,計算圓周率或者尋找更大的質數。
後來出現了‘Karatsuba 算法’,將數字的乘數分解成更小的部分,並重新組合這些部分,這種方式可以用少量的加法和減法來代替大量的乘法。
這一算法完成計算,隻需要需‘2 的n次方’次個位數的相乘,而不是之前的‘n的平方’次。
後來又有兩位科學家一起,利用‘引入快速傅立葉變換’的方式,來對大數相乘算法進行改進,隻需要‘n×log n×log(log n)’次個位數的相乘,就可以完成大數相乘計算,其中 log n是n的對數。
這一改進是跨越式的創新,後續大數相乘算法的持續改善,都是以這種方法為基礎進行。
王浩的研究成果也同樣是以‘引入快速傅立葉變換’的方式進行,才會用‘是改善、也是創新’來形容自己的成果,他的講解也是從‘傅立葉變換算法’開始的。
以‘傅裡葉變換算法’展開,輔助其他的計算手段,構建出一個包含‘結果’數字區域。
這就是創新的地方。
他的研究並不是正常進行一步步的計算,而是劃定了‘可能成為結果的數值集合’,比如,25*25,就可以簡單劃定結果在400到900的區間,通過一些必要的篩選,比如‘尾數是5’,把集合裡麵的數字一個個劃去,直到最後隻剩下一個數字,就確定為最終結果。
當然,超大數相乘要複雜的多,引入‘快速傅裡葉變換’並輔助其他計算方法,劃定的範圍會更加精準。
如果是計算‘25乘25’,可以直接圈定範圍就是在‘725、625、525’三個數字之間,而後可以迅速排除725和525,最終得到結果625。
“在對比每一個位數的數字後,就可以把範圍繼續縮小……”
“每一個進位數相乘的結果,都可以幫助繼續排除範圍內的數字,越是高位數,排除的範圍就越大,我們可以看到,當接近最高位數時……”
“涉及到更精準的篩選,就需要用到……”
隨著講解慢慢的展開,台下眾人都變得非常認真,同時也非常的感興趣,因為他們聽到的是一個非常新穎的計算方式。
在此之前,所有的乘法計算方式,都是按部就班、一步步的進行計算,而不是圈定一個集合去做篩選,新的方式更像是‘人腦思維’、‘模糊數學’的手法。
類似於‘人腦’、‘模糊數學’隻是最開始圈定範圍的部分,後來的一步步篩選,則都是詳細的計算。
第一排的評委席上,一頭白發的約瑟夫-斯發基斯小聲對沃爾夫岡-基利安說道,“我看了他的論文,知道這種方法,隻不過不清楚是否準確,也不清楚計算次數是否和論文上說的一樣少。”
“現在,我確定了。”
約瑟夫-斯發基斯說著有些得意,“是我堅持留下了這篇論文。”
沃爾夫岡-基利安笑道,“確實很有意思,方法很新奇,邏輯非常嚴謹,應該是沒有問題的。這會是乘法的一次創新,非常有意義的創新。”
台上。
王浩講解的非常細致,又用了半個多小時,才把所有的‘篩選步驟’一一講解完畢。
隨後,他雙手撐著講桌,麵帶微笑的總結道,“通過這一套篩選流程,最終隻會得到一個數字。那就是最終結果。”
“按照這個方法,當計算超大位數乘法時候,需要的計算次數,少於‘三分之n×log n’次計算,應該已經是目前已知最快的方法之一了。”
台下安靜了一下。
隨後,稀稀拉拉的掌聲響起,接近著掌聲越來越大,快速充斥了整個報告廳,並持續了很長時間。
第二排中間,有個人沒有鼓掌。
是戈爾利克斯。
昨天戈爾利克斯的報告被王浩證實是錯誤的,他回去以後審視了整個過程,就像是王浩當場指出的那樣,確實是存在錯誤的。
但是,戈爾利克斯可不會因此感激王浩,或者說,隻要不是傳說中的聖人,都不可能在被當眾指出錯誤後,會對指出錯誤的人心生感激。
戈爾利克斯是丟了個大臉,走在路上還被其他人指指點點。
當然主要原因是他的報告錯誤,但也不由得對於王浩暗中生恨,千萬不要指望頂尖的學者會心胸狂廣、會包容、會審視自己的錯誤之類。