好在大多數噴氣式飛機的飛行工況本來就處在結冰區的邊緣,因此民航領域和積冰有關的空難數量也還在可接受範圍內,而且多數都是些atr72這種支線客機乃塞斯納172之類更小的通航飛機,造成的影響也比較有限。
所以這個模擬出來的結果對於絕大多數人來說確實有些反直覺。
“運8飛機的飛行速度,在螺旋槳飛機中已經算是比較快的,根據我們的研究,在來流速度超過75m/s的情況下,過冷水滴在撞擊到機翼表麵之後會有更大的概率出現撞擊回退,而不是正常的鋪展粘滯現象,所以氣流速度更快的機翼上表麵反而相對乾淨。”
“並且,就算機翼上表麵發生結冰,由於更快的來流速度也對應著更小的來流角度,其冰形也主要為沒有溢流過程的霜冰,附著能力很差並且冰麵形狀與機翼形狀十分接近,危害相比前緣和下表麵的命冰要弱的多。”
“如果這是一架飛行速度比較慢的飛機,比如運5,那麼重點關注的積冰區域就會變成機翼前緣和上表麵。”
常浩南的解釋條理清晰,很快就讓圍在四周的工程師們聽明白了:
“所以咱們,或者說過去的幾乎所有大型螺旋槳飛機按照經驗搞的除冰裝置,其實都沒有抓住重點?”
“是的,有很大一部分的能量都被白白浪費掉了。”
常浩南點了點頭,然後重新拿起筆指向水平尾翼的部分:
“另外還有一點,就是飛機的積冰程度會隨著機翼弦長的增加而減弱,也就是越靠近機翼外部,越不容易發生積冰,這也可以解釋為什麼水平尾翼的積冰情況往往比主翼更加嚴重。”
“而根據我們的研究,相當一部分情況下,機翼結冰不僅不會導致升力下降,反而還因為積冰背部區域形成的強烈渦流而提供了額外的正壓區域,對於一架正常布局的飛機而言,就會出現強烈的低頭力矩,之前的那架運8j,也就是因此而發生了事故。”
“……”
在常浩南之後,是介紹氣象學因素對於積冰問題影響的林國範,以及機翼表麵微結構設計的祝蘭。
這場開在總裝車間裡麵的小規模研討會一直持續到了當天夜裡,就連晚飯都是食堂派人送過來的。
隨著三個人的講解不斷進行,一套嶄新的積冰理論逐漸鋪陳在了所有參會人員的麵前……
“那麼,隻要我們根據不同的積冰情況,在機翼的不同區域給出不同的除冰設計,就可以大大提高防冰能力,並且改善能量消耗水平。”
“根據我們的計算,在積冰情況最嚴重的機翼前緣應用祝蘭教授設計的柱狀表麵微結構之後,這四條線所對應的工況下,每米機翼所需要的電加熱除冰係統功率需求分彆為160w、465w、992w和1430w,而氣熱除冰係統的換算熱功率分彆為128w、402w、817w和1265w。”
“即便考慮留出50%的安全裕度,也比之前蘇聯人的設計節約65%的電能和85%的熱能。”
“尤其是後者,在熱氣除冰裝置打開的時候,可以直接提升大約8%的發動機輸出功率!”
常浩南說到這裡,把手中的鉛筆丟在了麵前的桌子上:
“所以,同誌們,接下來我們的工作就是,根據計算結果,把對應的兩套除冰裝置給設計出來,並且跟機翼內部結構進行匹配,讓運8這個老兵煥發新生!”
注:本章中關於機翼上下表麵流速的問題采用了中學課本上出現過的伯努利原理(高流速帶來低壓力)進行解釋。但嚴格來說,人們至今仍然並不完全清楚“飛機為什麼能飛起來”這個問題,關於機翼升力的具體來源,也分為幾種不同的流派
(本章完),找書加書可加qq群952868558