“一微米光刻機已經研發成功,並定型量產,在座的諸位功不可沒。但這一切都已經是過去式,接下來,咱們要在一微米光刻機的基礎上,再接再厲,研發0.5微米製程的光刻機。我代表維創電子公司表個態,不管研發過程中遭遇怎樣的困難,需要投入幾億,十幾億,甚至幾十億的研發資金,我們維創電子也在所不惜。接下來,有請薑教授就下一代光刻機研發計劃,做一下總體規劃。”
薑安平拿出一份手寫的稿子,清了清嗓子說道:
“當初劉老板提供的光刻機研發資料中,有一份0.5微米光刻機研發概要,點明了幾個研發要點,包括光源,透鏡係統,雙工台,掩模台等等。
其中雙工台、掩膜台、控製係統、晶圓傳輸係統,可以通過一微米光刻機的相關部件進行升級改造達成,難度不是太大。
但為了達到0.5微米的加工精度,光源係統和透鏡係統需要重新設計,重新打造,這個難度不是一般的大。”
烏光輝跟著發言道:
“我是搞激光技術出身,在光刻機光源方麵有一定研究。光刻分辨率想要達到0.5微米,光源波長需要達到365nm以下,且對光源強度和均勻度都有非常嚴格的要求。咱們在一微米光刻機上使用的高壓汞燈,理論上其極限能達0.35微米的加工精度,但需要對其結構進行徹底的改造,且越是接近極限,越難以達成。
而被業界普遍認定是下一代光刻機光源的KrF(氟化氪)準分子激光,光源波長為248nm,可以使最小工藝節點提升至350-180nm水平。當今世界上,很多激光相關的研究所,都在對準分子激光進行研發,進度參差不齊,達到實用水平的,一個都沒有。
我的建議是,在光刻機光源方麵,兩種線路同時研發,哪個率先取得突破,下一代0.5微米光刻機上,就使用哪一種光源。”
一位光學方麵的專家發言道:
“光源波長越短,傳播過程中越容易被透鏡吸收。下一代0.5微米光刻機,如果依舊使用高壓汞燈當光源,使用現在的透鏡組合就足夠了,頂多加工精度再提高一些。如果使用準分子激光做光源,透鏡係統就需要推倒重做,組合裡至少增加兩枚玻璃透鏡,參數也要重新設計,還有鍍膜材質也要重新開發。這方麵研究需要儘快提上日程,如果開發新透鏡組合,需要的計算量非常的大,使用普通計算機計算,需要的時間會非常長,我建議咱們使用ARM1芯片,組裝一台超級計算機出來。”
一位深鎮大學教計算機的教授,推了推眼鏡出聲道:
“超級計算機確實是個好東西,咱們很多研發中的項目涉及到大量數據計算和模擬測試,如果咱們實驗室有一台超級計算機,可以把研發速度提高很多。
維創電子公司晶圓工廠出產的ARM1芯片,是世界上第一款精簡指令集芯片,以10萬晶體管數量,提供了遠超80286芯片的性能,在功耗上,也隻有後者的三分之一左右,是製作超級計算機的最優芯片。